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Equivalence of conditional and external field ensembles in absorbing-state phase transitions
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I comment on the relation between two sampling methods for absorbing-state models. It is shown that a
certain ensemble without external field conditional to activity coincides with the unconditional ensemble for
sufficiently small external field. The actual physical processes involved are identical and the derivation of the
identity of the scaling behavior relies on a single (established) scaling law. While the conditional ensemble by
construction does not contain information about the system with large external field, it contains all the infor-
mation about the limit of vanishing external field and about the vicinity of the critical point: finite size scaling
as well as critical scaling in the temperature-like variable or in (small) external field.
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INTRODUCTION

Absorbing-state (AS) models suffer from the problem that
the activity necessarily ceases in any finite system in the
stationarity state [1]. In order to see a phase transition, one
cannot naively probe the stationary state. Two approaches are
widely accepted to overcome this problem: Either an exter-
nal field is applied that creates spontaneous activity [2] or an
ensemble conditional to activity is considered [3] (or techni-
cally more sophisticated [4]). Both methods effectively do
away with the absorbing state altogether. The additional ex-
ternal field might be physically more appealing because it
resolves the problem by introducing an external driving that
appears naturally in the corresponding field theories. On the
other hand, the external field represents a parameter that
needs to be tuned in addition to the temperature-like variable
that drives the transition, because certain universal behavior
can be obtained only for sufficiently small field [5]. The
conditional ensemble has one parameter less, but requires the
selection of “good samples” which might appear unphysical.

The different techniques have created a rift that goes
through the AS literature: Some authors use strong words to
reject one and support the other method. In the following it is
shown, however, that the external field ensemble coincides
with a conditional ensemble. The derivation applies to all
models where the external field triggers activity in the same
way as an initial seed in the conditional ensemble.

None of the two ensembles is superior to the other, pro-
vided they are implemented appropriately. In fact, one can
use the same implementation and simply derive one from the
other. Although the relation between the two ensembles ap-
pears to be rather trivial, it has significant implications in
particular for the external field ensemble. Yet, so far, it does
not seem to have entered into the AS literature.

DERIVATION

In the following, the relation between the moments of the
activity calculated in the different ensembles is derived. The
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precise definition of the activity depends on the particular
model, yet, all that matters is that the system has an order
parameter, the activity, the instantaneous value of which van-
ishes for good if the system, is “left unattended,” that is, the
system hits an absorbing state after some time. An activation
mechanism can trigger a spell of activity (an avalanche) and
these “seeds” are either implemented as an external field 4 or
as the initialization in the conditional ensemble.

First, I introduce the nth moment of the activity in the
external field ensemble, {p"). This is derived from a record
of instantaneous activity pg(z), see Fig. 1, in the obvious
way,

T,

=T f Odrp:t,(t), (1)

0

where the time 77, is the time span of the entire observation.

Second, I define the nth moment of the activity in the
conditional ensemble as the average taken conditional to the
system being active at all. Figure 2 shows three instances of
conditional activity. To define it formally, p-(¢;m) is the mth
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FIG. 1. Cartoon of a continuous record of activity in a system
with a small external field & which triggers new avalanches typi-
cally with some time of complete quiescence between them. The
total time span covered is 7(=300. The record could have been
produced by compiling the three instances shown in Fig. 2.
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FIG. 2. Cartoon of three avalanches produced by placing seeds
in an otherwise inactive system. The three instances could have
been taken from the continuous record in Fig. 1.

instance (i.e., the mth run) of a spell of activity in the system
at time ¢ after initialization at r=0. If ¢, is the time the
system is active, the moments are

Moo
> dtp(t;m)
m=1+0

m . (2)

<P">c =

Two technical remarks: First, one should formally distin-
guish between the estimate of the average from a finite
sample and the ensemble average. For brevity, this is not
done here. Second, (p")¢ is often estimated slightly differ-
ently to allow for a transient [6]: One defines

M .
> 01, -T) | dip(t:m)
(p"(T) = "= d (3)

E e(tm - T)(tm - T)
m=1

which is a temporal average from t=T to r=% of the average
(across instances) instantaneous activity conditional to activ-
ity, weighted by the number of systems active at time 7. A
transient can then be established as the time 7|, after which
the average (p")-(T) has reached a (quasi)stationary state
(see discussion below). Transients are commonly used in
equilibrium statistical mechanics, to suppress the effect of
the initialization. In the following, no transient is discrimi-
nated, i.e., (p")c=(p")(T=0) is used.

Both {p")y and {p")c depend on the system size L and
(p")y is, in addition, a function of the field h. However, the
records p(t) can be derived from py(t) and vice versa, pro-
vided the field h is small enough. This is illustrated in Figs. 1
and 2: The three records in the latter figure are derived from
the former, by restarting the clock ¢ after the mth spell of
activity is triggered in pg(z). On the other hand, given an
ensemble of avalanches p.(¢;m), a record py(f) can be con-
structed by introducing gaps of vanishing activity between
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spells of activity taken from pq(r;m). Without knowing
whether the po(7;m) are independent for different m, they
have to be compiled sequentially. This property, however,
will not be used in the following.

To construct the basic observables py(r) from pq(¢;m)
correctly, one would also need to know the distribution of
waiting times. This can, in principle, depend on the configu-
ration of the system and might therefore vary if the system
has more than one absorbing state. However, in the following
only the average waiting time will enter.

If the two observables are derived from each other in this
way, one has by construction

M
. . S,
m m=1
(=T, J dipfy() =T5' 20 | dipl(esm) = ——(p")c-
0 m=1+0 TO

(4)

For a large number of avalanches M the prefactor 7,'=Y_ 7,
converges to (w,,); (t,)c where (w,)y is the average time
that passes between two avalanches being triggered in the
external field ensemble and (z,,)c is the average duration of
an avalanche.

In order to derive {(w,,)y given h one needs to know how
the external field is implemented. Provided it operates as a
Poisson process throughout the system, one has (w,)y
=(Vh)™! where V is the volume of the system and 4 is the
field (density) or flux. It is also clear that the mechanism to
trigger avalanches used in the conditional ensemble must
correspond to the external field operating in the system with
field. This scenario is the case for the vast majority of models
considered in absorbing-state phase transitions. This is par-
ticularly obvious if only one absorbing state is present, so
that single seeds, which arrive independently, uniformly, and
with constant rate everywhere in the system, trigger ava-
lanches.

Accepting the Poissonian nature of the external field, one
arrives at the central result

(") e(8p,h;L) = hV(L)(t,,)c(dp:L)p")c(Sp;L),  (5)

valid asymptotically for sufficiently small field. In Eq. (5) all
dependences of the individual observables on the parameters
have been stated explicitly. The linearity in small field of all
momenta {p"),(Sp,h;L)xh is consistent with the literature,
e.g., [5], but see [13]. The parameter Sp is the temperature-
like variable that drives a transition at dp=0, subject to the
following considerations.

DISCUSSION

The above construction requires the field % to be so small
that no new seeds arrive while an avalanche is running, or,
more specifically, that the statistical weight of these events is
negligible. Otherwise (p"). derived from (p")y would de-
pend on the external field, which has been excluded in Eq.
(5) and is crucial for the following derivations. In other
words, the derivation relies on a separation of time scales; in
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this sense (p")¢ is an observable as would be used in self-
organized criticality [7], while {(p"); represents the “instan-
taneous activity” [8,9].

Therefore Eq. (5) can only be expected to hold if (Vi)~! is
large compared to (t,)c. This is the case for sufficiently
small field at given system size, i.e., in particular for finite
size scaling where the system size is fixed before the limit
h—0 is taken. The condition is also met in the inactive
phase, §,<0, where the average duration of the avalanches
converges with increasing system size, so that, again, the
average duration can be chosen to be small compared to the
time scale set by the external field. In this case, the thermo-
dynamic limit can be taken before #— (0. However, in the
active phase, the average duration diverges extremely fast
with system size, so that the external field can never be suf-
ficiently small when the thermodynamic limit is taken first.

Because the external field /2 appears only as a prefactor on
the right-hand side of Eq. (5), it is very simple to derive the
scaling of (p")y(8p,h;L) from the scaling of (r,)-(Sp;L)
and (p")(8p ;L) assuming, naturally, V(L)=a,L?, where d is
the spatial dimension of the system. The converse, i.e., the
derivation of the scaling of {p")-(8p;L) from the scaling of
(p")u(8p,h;L), is not as simple and therefore shown explic-
itly in the following.

Standard scaling assumptions suggest [5]

(p"Yy(Sp,h;L) = an)\_B"Rf(ap Sph,ah\%,a LNVL)  (6)

with nonuniversal metric factors [10] a,,, Z’” etc., arbitrary
(scaling) parameter A, scaling function R, and the usual
critical exponents o (field exponent), v, (spatial correlation
length exponent), and B3,, the latter being B;=8 (order pa-
rameter exponent) for the first moment and B,=ng if gap
scaling applies [11]. Comparing Eq. (6) to Eq. (5) implies
that Rf is asymptotically linear in the (small) external field

RnH(a[,c‘ip,ahh,aLL) = ahhﬁn(a,ﬁp,aLL), (7)

where R, must obey Eq. (6) as well, i.c., En(ap5p,aLL)

=\""PR,(a,dp\,a,L\""1). Equation (7) implies that the
p)
susceptibility XH(&p,h;L):%I, or the derivative of any

moment {p"),; with respect to &, is independent from the
external field under the conditions stated earlier.

To derive the scaling of (p")~(Jp;L), one needs the scal-
ing of (t,,)c(Sp,L) which is well understood [5],

{tc(dp,L) = aT(a,dp,a;L) = at)\V“(l_‘s)T(al,ép)\,aLL)\_"i),
(8)
where v is the temporal correlation length exponent, Jis the
survival exponent, and v (1—d)=0o—dv, which will be cru-

cial for the next step. Combining Egs. (5)—(8) produces the
scaling of the conditional moments:

d
aya,a; B
(0" 8p;L) = =ENPR(a,6pN,a LX), (9)
aya;

where RS(x,y)=R,(x,y)/[y*T(x,y)].
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Comparing Eq. (9) to Eq. (6) shows that both ensembles
display the same scaling behavior. The lack of this proof
might explain the critical remarks about the conditional en-
semble in [2]. The finite size scaling for the two observables,
however, differs: Setting Sp=0 and choosing N\ so that
a; L\ =1, Eq. (9), gives

d-g,/
ahanaL ﬁn Vi

(p"c0;L1) = LPRE(0,1).  (10)

t
Because (p")(0;L) is nonzero by definition but bound from
above, RS(O, 1) must be finite, so that (p")(0;L) < L™V as
one would expect from equilibrium critical phenomena.
Similarly, one finds

(P"(0,h;L) = anazﬂ"/uL_ﬁ"/ViRnH(O,Clhh(aLL)U/Vl, 1)

= a,,azﬂ"/"lL_ﬂ"/”iahh(aLL) o/ "iﬁn(O, 1)
(11)

from Egs. (6) and (7). Again, the activity {(p")y(0,h;L) is
bound from above and does not vanish at finite external field,
so that EH(O, 1) is finite, and therefore {p"),(0,h;L)
o L7=P/?. This rather unusual finite size scaling behavior
of the activity is documented in the literature (see Ref. [5], in
particular Figs. 33 and 47). The effective finite size scaling
exponent for n=1is (60—B)/v,=7y/v,, which is the finite
size scaling exponent of the susceptibility. Indeed, for small
external fields at p=0 and in finite systems, one expects
(P a=hxu-

Equation (5) implies that, under the general conditions
stated earlier, al/l moments vanish linearly in the external
field. The Binder cumulant

<P4>H
3P
therefore diverges like 47!, In [2] it has been suggested that a
divergent Binder cumulant is a “characteristic feature of all
absorbing phase transitions,” but in the light of the above
derivation, it appears rather like a generic feature of the par-
ticular ensemble. Moreover, replacing (p")y by the condi-
tional averages (p")¢ in Eq. (12) renders the Binder cumulant
a universal moment ratio again and reinstates it as a “very
useful method” to identify the transition. The same applies to
lower moment ratios, which can be determined with higher
accuracy, such as (p)2/(p*)¢.

It is now also clear why the slightly more complicated
moment ratio proposed in [12],

_ P = PPN
<P>H<P4>H - <P>H<P2>H ’

converges to a finite value: Both denominator as well as
numerator are, to leading order, quadratic in 4. In fact,
2 3 2 3
lim U(5p,h,L) — lim <P >H<P4 >H _ <P >C<P4 >C’
h—0 =0 (PP (P kP’

where the first equality holds because (p);{p>)3 € O(h?), and
the second because the remaining terms carry the same pref-

O(ép,h,L)=1- (12)

(13)

(14)
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actor, namely [AV(L){t,,)c(Sp;L)]*, see Eq. (5). The findings
above are also confirmed by the exact results in [12]
[the right-hand side of Eq. (21) in [12] should read 2/(mx)
for x—0].

The linearity of {p)y in h, Eq. (7), contradicts the mean
field result (p)H(5p=O,h)=\f'Z [5], which is, however, con-
sistent with mean field theory not allowing a proper distinc-
tion between conditional ensemble and external field en-
semble.

The limitations of Eq. (5) become clearer when compar-
ing to the standard scaling assumption lim;_ .{p),(p
=0,h;L)*hP7 [1]. Equation (5) seems to suggest that B/ o
=1 which clearly is not the case. However, Eq. (5) applies
only where the waiting time (hV)~' L™ is large compared
to {t,,)c* L7174 which cannot be the case if o/v, >0 and
the thermodynamic limit is taken at finite field 4. It is worth
noting, however, that Eq. (7) relies solely on the Poissonian
nature of the external field.

Finally, I want to discuss briefly two features of condi-
tional ensembles as they often appear in the literature,
namely the initial condition and the discounting of a tran-
sient. The latter was introduced as T in Eq. (3), by defining
the conditional nth moment as an average taken from =7 to
t— . For any nonvanishing transient 7> 0 the strict identity
of conditional and external field ensemble breaks down. To
restore the above results, more elaborate arguments are
needed, based on the length of transient, its contribution to
the average, and its scaling.
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Similarly, there is no strict identity of the two ensembles,
if the conditional ensemble is based on initial conditions
which do not correspond to configurations reached when the
external field operates on inactive configurations in the ex-
ternal field ensemble. On the other hand, one might hope that
the introduction of a transient erases the dependence on the
initial condition and that asymptotically, the effect of the
transient and the initial condition becomes negligible.

SUMMARY

To summarize, I address the issue of the relation between
the two ensembles usually considered in absorbing-state
phase transitions. It turns out that the ensemble of “activity
conditional to activity” can be derived from the ensemble
obtained by applying an external field and vice versa, pro-
vided that the avalanche duration is small compared to the
waiting time between two avalanches. Technically, both
methods can be implemented in (almost) the same way. Be-
cause moment ratios, such as the Binder cumulant, remain
finite in the conditional ensemble and because moments of
the activity in the presence of an external field all vanish
linearly in the external field, the conditional ensemble might
be more comfortable to study.
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